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1. Introduction

Generalized (complex) geometry, developed by Hitchin [1 – 3] and Gualtieri [4], has emerged

as a useful framework for describing new string compactifications. It naturally includes a

large class of vacua known as generalized Calabi-Yau manifolds [5 – 11], and also gives a

more elegant description of so-called non-geometric spaces or T-folds [12 – 18].

A strength of this formalism is that it is naturally covariant under T-duality provided

one dualizes along a U(1)-isometry direction. While the action of T-duality on the sugra

fields, given by the Buscher rules, is very complex [19 – 21], the corresponding transforma-

tions in generalized geometry are quite simple.
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One of the interesting features of generalized geometry is that the metric and B-field

are no longer considered the fundamental objects. Rather, it is only the combination of g

and B [22],

G =

(
−g−1B g−1

g − Bg−1B Bg−1

)
, (1.1)

that enters into the formalism. This unification of B and g is very natural in a T-duality

covariant formalism since B and g mix under T-duality.

However, having grouped g and B together into a single generalized object, G, we are

left with a puzzle: What is the generalized version of NS-NS 3-form flux, H = dB? In

particular, we would like to find a generalized analogue of
∫

Σ
H , (1.2)

where Σ is a 3-cycle and H = dB is the NS-NS 3-form flux. Since generalized geometry is

covariant under T-duality, the generalized version of (1.2) should also capture its various

T-duals. Under T-duality, 3-form flux is mapped to so-called geometric flux, which is given

by the first Chern-class of a circle bundle [23, 24, 14, 25]. Applying T-duality once more,

the flux becomes the somewhat obscure non-geometric flux [14, 18, 26 – 30, 15, 17, 11, 31]

or Q-flux in the parlance of [9, 10].

The purpose of this paper is to argue that the generalized analogue of H, which we

denote H, is a slight modification of the Nijenhuis operator given in [4]. Just as H, being a

three-form, can be defined by its action on vectors, H(V1, V2, V3), we define H by its action

on generalized vectors V ∈ T ⊕ T ∗,

H(V1,V2,V3) = −Nij(Ṽ1, Ṽ2, Ṽ3) , (1.3)

where Nij is the Nijenhuis operator and we define Ṽ = GV.

Given this definition of H, we next define what it means to integrate it over a 3-cycle

Σ. In the case of ordinary three-flux this is a trivial step, since we need only to pull the

3-form H back to the three-cycle and integrate it. In the case of the generalized flux, we

will need some extra data on our three-cycle in order to define integration. This extra

data will amount to specifying an involutive maximal isotropic subbundle Ω ∈ T ⊕ T ∗.

Roughly speaking, Ω is needed to define the “frame” in which one is defining the flux.

When Ω = T ∗, our formulas will reduce to just the ordinary formula for H-flux. When Ω

includes vectors as well as forms, we will measure geometric and non-geometric fluxes. We

will call the combination of Σ and Ω a generalized 3-cycle, Σ.

Finally, we will give a prescription for integration of H over our generalized three-cycle

Σ. As we will see, this is the most subtle part of the story. Because generalized geometry

is naturally covariant under T-duality, one ends up needing a prescription for integration

over a dual direction. Such a notion of integration can only be defined when the 3-cycle has

various isometries and we will need to put certain restrictions on the form of the 3-cycles.

In the end, we will only give a partial prescription for this integration, but our definition

will be sufficiently general to see that the generalized flux H captures all of the T-duals of

H-flux.
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Having defined a generalized notion of H-flux, we next present an additional motivation

for the formula (1.3). Recalling that H-flux often arises as the torsion of connection, we

construct a generalized connection D on T ⊕T ∗. This connection is not a connection in the

standard sense, since it allows one to differentiate along T-dual directions. Constructing

what seems to be the natural analogue of the torsion of the generalized connection, we find

that it vanishes. However, we show that a certain torsion-like antisymmetric object built

from the connection reproduces the generalized flux formula (1.3).

The organization of this paper is as follows: We begin with a review of generalized

geometry in section 2. In section 3 we define the generalized flux, which we illustrate in

section 4 in several examples. In section 5 we demonstrate a relationship between the

generalized flux and the generalized connection. Finally, we conclude in section 6 with a

discussion of some open problems and future directions.

2. Review of generalized geometry

One motivation for introducing generalized geometry is that it is a formalism in which

T-duality acts in a simple way. While this formalism has been developed recently by

Hitchin [1 – 3] and Gualtieri [4], it has its roots in the older work of Duff [22] and

Tseytlin [32]. In this section, we give an introduction to the subject which focuses on

its relationship with T-duality of the string worldsheet. The reader familiar with the gen-

eralized literature is warned that this discussion is atypical and is not meant to explain the

mathematical origins of generalized geometry which are given, for example, in [4].

2.1 T-duality and generalized geometry

We begin with a review of how T-duality acts at the level of the classical string action.

Consider a string propagating on a d-dimensional Euclidean manifold M , with metric gµν

and B-field Bµν ;

S =
1

2

∫
gµνdXµ ∧ ∗dXν + BµνdXµ ∧ dXν . (2.1)

When gµν and Bµν do not depend on the coordinates, Xµ, we can rewrite the action as

S =
1

2

∫
gµνV µ ∧ ∗V ν + BµνV

µ ∧ V ν + 2 dX̂µ ∧ V µ . (2.2)

To recover the original action (2.1), one integrates out X̂ , which imposes dV = 0. Since

every closed 1-form is locally exact,1 we may replace V = dX, yielding (2.1).

If instead, one integrates out V , one gets a new sigma model in terms of X̂ that is

the T-dual of the original model with a new ĝ and B̂ that are related to g and B by the

Buscher rules [20, 21]. One also discovers the on-shell relationship between the coordinate

Xµ and its T-dual, X̂µ;

dX̂µ = gµν ∗ dXν + BµνdXν . (2.3)

1Worrying about global issues on the worldsheet reveals the standard exchange of winding and momen-

tum modes and requires that the coordinates Xµ be periodic.
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As noted by Duff [22], if we combine dX and dX̂ into a vector,

(
dXµ

dX̂µ

)
, (2.4)

then T-duality acts in a very simple way by exchanging elements of the top with elements

of the bottom.

Loosely speaking, in generalized geometry, we can define a generalized vector to be an

element V ∈ T ⊕ T ∗,

V =

(
V µ

ωµ

)
, V ∈ T, ω ∈ T ∗ , (2.5)

which transforms under T-duality, as well as diffeomorphisms and gauge transformations

of B, in the same way as (2.4). Since it will appear often, we define E = T ⊕ T ∗.2

Since V is a direct sum of a vector and a 1-form, we will also write V as a formal sum

of a vector and a 1-form,

V = V + ω , (2.6)

as is standard in the generalized literature [1 – 4].

2.2 Symmetries of E = T ⊕ T ∗

We now describe explicitly how various gauge transformations act on E. For readers familiar

with the generalized literature, we note that we are describing spacetime symmetries and

not the symmetries of the frame bundle, which can be arbitrary elements of O(d, d).

We’ve already seen that, under T-duality, we just exchange forms and vectors. For

example, if we take our spacetime to be 2-dimensional, and T-dualize along the 1-direction,

we would map

V =




V 1

V 2

ω1

ω2




T1−→




1

1

1

1







V 1

V 2

ω1

ω2


 =




ω1

V 2

V 1

ω2


 . (2.7)

It is important to remember that T-duality will only be an allowed transformation when the

direction we are T-dualizing along is a U(1) isometry. As we will see later, this will require

that the generalized vectors we are dualizing be independent of the U(1)-isometry direction.

Whenever we speak of an object transforming covariantly under T-duality, we will always

mean this restricted sense. T-dualities thus form a discreet set of global symmetries.

We also have two kinds of local symmetries, diffeomorphisms and gauge transforma-

tions of B. Diffeomorphisms act in the natural way on the vector and form indices. Ex-

plicitly, if we transform coordinates from Xµ to Xµ′

and define Mµ′

µ = ∂Xµ′

/∂Xµ then

V transforms as

V →
(

(M−1)t 0

0 M

)
V . (2.8)

2In the presence of a non-trivial B-field, one can only split E into T ⊕ T ∗ locally as T ∗ is twisted by a

gerbe [3]. In the case of non-geometric spaces, both T and T ∗ may be twisted.
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Under gauge transformations B → B + dλ,3 we can see from (2.3) that dX̂µ → dX̂µ +

(dλ)µνdXν . Thus, for the generalized vector (2.5), we should shift ωµ → ωµ + (dλ)µνV ν .

This can be written in matrix form as

V →
(

1 0

dλ 1

)
V . (2.9)

Another standard notation for a gauge transformation of B, which uses the notation intro-

duced in (2.6) and is common in the generalized literature, is to write

eδB(V + ω) = V + ω + iV δB , (2.10)

where δB = dλ, and we consider δB to be acting from the left by contracting indices with

vectors. Note that, as is standard, for a form ρµ1...µn , we define (iV ρ)µ2...µn = V µ1ρµ1...µn .

2.3 The canonical inner product and the metric G

The diffeomorphisms, B-transformations and T-duality transformations are all symmetries

of the canonical inner product given by

〈V1,V2〉 = 〈V1 + ω1, V2 + ω2〉 = ω1(V2) + ω2(V1) , (2.11)

where ω(V ) = V µωµ. This metric has signature (d, d) and is thus invariant under local

rotations in O(d, d). Note that the full local O(d, d) symmetry is only partially generated

by (2.7), (2.8) and (2.9). The U(1)-isometry condition on the T-duality transformation, as

well as the requirement that the B-transformations are pure-gauge, put various restrictions

on the allowed symmetries. These extra conditions are required for the Courant bracket

(to be introduced presently) to transform covariantly.

A subbundle Ω ∈ E on which the canonical metric vanishes is said to be isotropic. It

is said to be maximally isotropic if its dimension is half that of E. Simple examples of

maximally isotropic subbundles are T ∗ and T .

So far, we have been ignoring the fact that dX and dX̂ are not independent fields, and

it might seem that we need to impose (2.3) to project out some of the generalized vectors.

In fact, however, the condition (2.3) naturally defines two conditions dX̂µ = ±gµνdXν +

BµνdXν depending on whether we are studying right-moving or left-moving fields. In terms

of a generalized vector V, of the form (2.5), these two conditions ωµ = ±gµνV ν + BµνV ν

restrict V to be in one of two subspaces C± ⊂ E;

C± ≡ span

{(
V µ

±gµνV
ν + BµνV

ν

)∣∣∣∣ V µ ∈ T

}
. (2.12)

Conveniently, these two spaces are orthogonal under the inner product (2.11) and satisfy

C+ ⊕ C− = E. They therefore define a splitting.

3We should also include the large gauge transformations, B → B + δB which are closed, but not exact,

and are in integer cohomology.
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This splitting can be encoded by a matrix G which has eigenvalues +1 for elements in

C+ and eigenvalues of −1 for elements of C−. Explicitly,

G =

(
−g−1B g−1

g − Bg−1B Bg−1

)
. (2.13)

Note that G2 = 1, which follows from the fact that its eigenvalues are ±1. Heuristically,

G should be thought of as the analogue of the Hodge star, ∗, on the world sheet. In

generalized geometry, we never speak of the metric and B-field separately, it is only the

combination (2.13) which enters the story. If Λ is some combination of diffeomorphisms,

B-transformations and T-dualities, G transforms as G → ΛGΛ−1.

Using G one can define a positive-definite inner product on E;

G(A,B) = 〈A,GB〉 = 〈GA,B〉 . (2.14)

This inner product often acts as the generalized version of the metric g.

2.4 The Courant-bracket and the Nijenhuis operator

A basic object in generalized geometry, whose properties are discussed in detail in [4], is

the Courant-bracket,

[V1 + ω1, V2 + ω2]C = [V1, V2]L + LV1
ω2 − LV2

ω1 −
1

2
(d(iV1

ω2) − d(iV2
ω1)) , (2.15)

where [V1, V2]L is the Lie-bracket of two vector fields and LV = iV d + diV is the Lie-

derivative. As with the other objects we have defined, the Courant-bracket is covariant

under diffeomorphisms, B-transformations and T-duality. The covariance under diffeomor-

phisms is manifest from the definition, while the convariance under gauge transformations

of B follows from an identity proved in [4],

[eδBA, eδBB]C = eδB [A,B]C + iπ(B)iπ(A)δH , (2.16)

where δH = dδB and we define π : T ⊕ T ∗ → T to be the projection onto the tangent

bundle; in other words, π(V + ω) = V . When dδB = δH = 0, we find

[eδBA, eδBB]C = eδB [A,B]C , (dδB = 0) (2.17)

which is the expection result for covariance.

That the Courant-bracket is covariant under T-dualities may be surprising since there

is a theorem in [4] which states that gauge transformations of B and diffeomorphisms

are the only allowed symmetries. However, this theorem does not allow for the extra

assumption that there are isometries.

Indeed, suppose that we have an isometry along the x direction so that the components

of our generalized vectors satisfy

∂xVi = ∂xωi = 0 . (2.18)
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Let µ run over the other coordinates besides x and define W + χ = [V1 + ω1, V2 + ω2] . We

can then expand out (2.15) to give

W x = V ν
1 ∂νV x

2 − (1 ↔ 2) , (2.19)

W µ = V ν
1 ∂νV µ

2 − (1 ↔ 2) , (2.20)

χx = V ν
1 ∂νω2x − (1 ↔ 2) , (2.21)

χµ = V ν
1 ∂νω2µ +

1

2
∂µ(V xωx) +

1

2
∂µ(V µωµ) − (1 ↔ 2) . (2.22)

Note that switching V x
i ↔ ωix switches W x ↔ χx while W µ and χµ are left alone. This

yields our desired formula:

[Tx(V1 + ω1),Tx(V2 + ω2)]C = Tx[V1 + ω1, V2 + ω2]C . (2.23)

We emphasize again that this formula only holds when the generalized vectors are inde-

pendent of the direction we are dualizing.

An interesting property of the Courant-bracket is that it does not satisfy the Jacobi

identity. Rather [4],

[[V1,V2]C ,V3]C + cyclic = dNij(V1,V2,V3) , (2.24)

where the Nijenhuis operator is defined by

Nij(V1,V2,V3) =
1

3
〈[V1,V2]C ,V3〉 + cyclic . (2.25)

The Nijenhuis operator, as we will see later, plays an important role in defining the gener-

alized flux.

Given a isotropic subbundle Ω ∈ E, the bundle is said to be involutive if it is closed

under the Courant bracket. An important property of the Nijenhuis operator is that it

vanishes on an isotropic subbundle if and only if the the subbundle is involutive [4].

3. Defining the generalized NS-NS flux

Computing the flux associated with the 3-form H = dB can be thought of as having three

ingredients: the flux H, the cycle Σ we wish to integrate it over and the actual integration∫
Σ H. Lifting this computation to generalized geometry requires modifying each of these

notions.

3.1 The generalized p-cycle

Let’s begin by extending the notion of a p-cycle. A generalized p-cycle will be given by two

ingredients. The first is just an ordinary p-dimensional manifold Σ which is a submanifold

of the spacetime manifold M equipped with a metric and B-field.4

4In the case of a T-fold, this definition is inadequate since M is no longer a manifold. In the cases we

will consider, we will take M to be three-dimensional and the cycle Σ which wraps M to be just identified

with M itself. We will not attempt to give a rigorous definition here of what it means, in general, for a

T-fold to have a “sub-T-fold”.
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Given such a Σ, we can try to pull back the bundle E = TM ⊕ T ∗
M to Σ. There is a

slight subtlety in doing this; in the presence of a nontrivial B-field, the bundle E is twisted

by a gerbe [3]. However, since we can pull back the B-field to Σ, we can just put locally

EΣ = TΣ ⊕ T ∗
Σ, where it is understood that globally T ∗

Σ is twisted by the pullback of the

B-field. We can also pull back the splitting of E into C+ ⊕ C−. This is accomplished by

pulling back g and B to Σ and then constructing the matrix G given in (2.13).

Given our 3-cycle, Σ and its associated bundle, EΣ, we define a generalized 3-cycle,5 by

specifying a “frame”, Ω, which we take to be a maximal isotropic subbundle Ω ⊂ EΣ. Ω is

to be thought of as the analogue of T ∗. The idea is that if we found some set of T-dualities,

diffeomorphisms and B-transformations which take Ω to T ∗
Σ , then our definition of a three

cycle should reduce to an ordinary three cycle and the generalized flux should reduce to

the standard H-flux.

The reader might ask why we need to introduce Ω as an extra piece of data. The

necessity of including Ω follows from the fact that one can construct manifolds which have

multiple kinds of flux. The choice of a frame Ω is just the right extra information to select

which of these fluxes we wish to measure.

To specify our choice of Ω, it will be useful to introduce a vielbein, Vi, which spans Ω

and satisfies

G(Vi ,Vj) = δij , i ∈ {1, 2, 3} . (3.1)

Such a choice of vielbein will typically not exist globally, but we will check in the flux-

formula that we write down that we have an invariance under Vi → Oi
jVj for O ∈ SO(p)

so that everything depends only on Ω.

3.2 The measure for integration

In order to get some intuition for the role of the Ω in our definition of the generalized

3-cycle, consider the case when Ω = T ∗
Σ. In this case, the vielbein Vi which spans Ω is just

a collection of forms;

Vi =

(
0

ωi

)
, ωi ∈ T ∗

Σ . (3.2)

The property (3.1), using the explicit form of G given in (2.13), reduces to

ωiµωjνg
µν = δij . (3.3)

Thus, ωiµ is an ordinary vielbein. To define a measure, we can simply wedge the V’s

together, giving the volume form,

V1 ∧ V2 ∧ . . . ∧ Vp = ω1 ∧ ω2 ∧ . . . ∧ ωp . (3.4)

If we have coordinates ξ1,2,...,p on our space Σ, this reduces to

ω1µω2ν . . . ωpρ dξµ ∧ dξν ∧ . . . ∧ dξρ = det
iµ

(ωiµ)dξ1 ∧ dξ2 ∧ . . . ∧ dξp (3.5)

=
√

g dξ1 ∧ dξ2 ∧ . . . ∧ dξp ,

5This definition of a generalized 3-cycle should be compared with Gualtieri’s different definition of a

generalized (complex) submanifold [4].
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where g = det(gµν). This gives us a suitable measure for integrating a scalar.

To define a measure for a general set of Vi, consider that under T-duality along, say, the

ξ1 direction, the form dξ1 would be exchanged with the vector ∂/∂ξ1. Thus an integration

measure,

dξ1 ∧ dξ2 ∧ dξ3 , (3.6)

would formally become the somewhat absurd looking

∂

∂ξ1
∧ dξ2 ∧ dξ3 . (3.7)

This rather odd looking measure should be interpreted as telling us that one of the direc-

tions we are integrating over is actually a coordinate on the T-dual circle. Indeed, it is

convenient to make the formal replacement,

∂

∂ξµ
→ dξ̂µ , (3.8)

where ξ̂µ is the coordinate T-dual to ξµ. We can then write a vector field as V µ∂µ → V µdξ̂µ.

Our measure, (3.7), then takes the more visually appealing form,

dξ̂1 ∧ dξ2 ∧ dξ3 . (3.9)

Intuitively, as the notation suggests, we should integrate over ξ2,3 using standard integration

while for the ξ1 coordinate, we should integrate over its T-dual, ξ̂1. Postponing until the

next subsection the precise rules for doing this, we can write down the formal measure:

V1 ∧ V2 ∧ . . . ∧ Vp , (3.10)

which reduces to the ordinary integration measure (3.5) when the Vi take the form (3.2).

3.3 Integration over the generalized measure

To understand how we should define integration over the generalized measure, it is useful to

consider the example of a generalized 1-cycle parametrized by a coordinate ξ1 with period

∆ξ1. In this case, our vielbein is a single vector, V. Suppose that we take V = V where V

is a one component vector. We would like to define
∫

V =

∫
V . (3.11)

Using (3.1) implies that

(V 1)2g11 = 1 , (3.12)

so that we may take

V =
1√
g11

∂

∂ξ1
. (3.13)

Using the notation introduced in (3.8) and assuming that g11 does not depend on ξ1, we

can write this as

V =
√

ĝ11 dξ̂1 , (3.14)

– 9 –
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where ĝ11 = g−1
11 is the metric of the dual circle as found from the Buscher rules. It is now

clear how we can integrate over V . We put

∫
V =

∫ √
ĝ11 dξ̂1 = L̂ , (3.15)

where L̂ is the length of the dual circle. Noting that L̂ = L−1 where L =
√

g11∆ξ1 is the

length of the ξ1 circle, we learn that

∫
dξ̂1 ≡ 1

∆ξ1
, (3.16)

which is just what one would expect for the period of the dual circle. This is the basic

definition that will allow us to integrate over the generalized measure.

Note that it was important that our integrand did not depend on the direction we were

integrating over. It would be very interesting if there were a natural definition of

∫
f(ξ)dξ̂ = ? , (3.17)

but we suspect that, in general, no such definition exists. Instead we will insist that

whenever we have an integral of the form,

∫
f(ξµ) dξ1 ∧ . . . ∧ dξq ∧ dξ̂q+1 ∧ . . . ∧ dξ̂p , (3.18)

that f(ξµ) only depends on ξ1,2,...,q and that ξq+1,...,p are periodically identified with period

∆ξi. We can then repeatedly apply formula (3.16) to yield




p∏

i=q+1

1

∆ξi




∫
f(ξµ) dξ1 ∧ . . . ∧ dξq . (3.19)

This reduces the rather mysterious looking integral (3.18) to an ordinary integral. Effec-

tively, we are dimensionally reducing along the circle directions ξq+1,...,p, which we can

think of as being fibered over the ξ1,...,q directions. After dimensional reduction, we can

then consistently integrate over the base space directions, ξ1,...,q.

3.4 The fiber condition

To complete our definition of integration, we wish to impose that the integral over the

generalized measure can always be reduced to an ordinary integral by repeated application

of the rule (3.16). In this subsection we give a simple criteria for this requirement which

we will refer to as the fiber condition. It is quite likely that a more general integration can

be defined, but the condition given will suffice for our purposes.

To ensure that whenever we have an integral over a dual direction, the associated

coordinate parametrizes a circle, we insist that we can write Σ as a T p−q with coordinates

ξq+1,...,p fibered over a space with coordinates ξ1,...,q. We then insist that the non-zero

vectors π(Vi) are a basis for the tangent bundle of the torus fiber, while the forms live on
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ξ1

ξq

V1

Vp−q

T p−q fiber





Base space





Figure 1: In order to define integration over our generalized p-cycle, we demand that it take

the form of a T p−q fibered over a base space. We further demand that nothing depend on the

coordinates of the torus and that the vector parts of the generalized vielbein span the tangent

bundle of the T p−q. Finally, we assume that the forms live in the span of the dξi for i ∈ {1, . . . , q}.

the base space. Furthermore, we impose that nothing depends on the T p−q fiber. These

rules, which together form the fiber condition are illustrated figure 1.

Having imposed such a strong condition on our generalized cycles, we can ask: to

what extent is the fiber condition invariant under diffeomorphisms, B-transformations and

T-duality? Already with the diffeomorphisms we see that we should restrict the diffeomor-

phisms to those which preserve the torus fiber and do not depend on the torus directions.

Generically, other diffeomorphisms will exist, but these will take us away from the space

of generalized cycles where we know how to integrate.

When we study B-transformations, it is clear that we should not allow those trans-

formations that depend on the torus coordinates. In addition, recalling that the B-

transformations take the form,

eδB(V + ω) = V + ω + iV δB , (3.20)

we see that for all V ∈ TT p−q we should demand that iV δB is a form on the base space.6

This ensures, for instance, that a measure of the form,
∏

Vi∧
∏

ωj =
∏

V µ
i dξ̂µ∧

∏
ωjµdξµ,

will be invariant under the restricted B-transformations, since the shift in V will be some

linear combination of the ωi, which will vanish when wedged with
∏

j ωj.

Finally, we can ask when the fiber condition is invariant under T-duality. First, suppose

we T-dualize along one of the directions of the fiber. In this case, T-duality simply removes

one of the directions of the fiber and adds it to the base, taking T p−q → T p−q−1. That the

6Because of this restriction on the B-transformations, the fiber condition is not invariant under the

expected SO(p− q, p− q; Z) symmetry of the T p−q torus fiber. In order to restore this invariance one must

define a notion of integration that allows the dual coordinates to mix with the coordinates in the fiber

directions.
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integral remains invariant follows by construction from our definition of integration along

the vector-like directions.

We can also T-dualize along a base-space direction. Suppose that the direction we

wish to T-dualize along is generated by a vector V . Then, provided that V doesn’t depend

on the fiber coordinates, it follows that we can, at least locally, define a new coordinate

associated with the isometry, while leaving the fiber coordinates alone. Under T-duality,

this coordinate is added to the fiber coordinates to take T p−1 → T p−q+1. That the integral

is unchanged follows again from our definitions.

Note that the fiber condition implies the weaker conditions,

〈Vi,Vj〉 = 0 , (3.21)

[Vi,Vj ]C = 0 . (3.22)

These conditions are very natural since they are trivially satisfied in the ordinary integration

case when Ω = T ∗
Σ. They are not, however, sufficient to ensure that one can perform the

generalized integral.

3.5 The generalized version of NS-NS flux

Having defined a generalized integral and a generalized 3-cycle, we must now write down

the flux that we wish to integrate over. The result, as given in the introduction, which will

be motivated by the examples, is given by

H(V1,V2,V3) = −Nij(Ṽ1, Ṽ2, Ṽ3) , (3.23)

where the Nijenhuis operator was defined in (2.25) and we define

Ṽ = GV . (3.24)

The complete formula for the flux is
∫

Σ

H ≡
∫

Σ
H(V1,V2,V3) V1 ∧ V2 ∧ V3 . (3.25)

Since Ω is defined to be a isotropic bundle, it follows that Ω̃ = GΩ is also isotropic.

Using the result of Gualtieri [4] that Nij on an isotropic subbundle is actually a tensor, we

learn that

H(Vi,Vj, Ok
mVm) = Om

kH(Vi,Vj ,Vk) (3.26)

for any matrix Oi
j. Writing

H(V1,V2,V3) V1 ∧ V2 ∧ V3 =
1

3!

∑

i,j,k

H(Vi,Vj,Vk) Vi ∧ Vj ∧ Vk, (3.27)

we see that the flux is invariant under rotations Vi → Oi
JVj provided that O ∈ SO(3).

Hence, our flux formula only depends on Ω and not on any particular basis.7

7Indeed, (3.27) can be defined as the projection of the Nij operator onto eΩ using metric G(, ). This

defines an element of ∧3 eΩ ∈ ∧
3E.
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4. Special cases of the generalized-flux formula

In this section we apply the flux formula (3.25) to various specific cases in order to show

that it reproduces standard examples. To do so, it is useful to have an explicit expression

for H in terms of the components of the vielbein, Vi . Let our vielbein take the form,

Vi =

(
Vi

ωi

)
. (4.1)

We denote

Ṽi = GVi =

(
Ṽi

ω̃i

)
=

(
g−1ωi − g−1BVi

gVi − Bg−1BVi + Bg−1ωi

)
. (4.2)

Rather than substituting (4.2) directly into the formula for H and expanding it out in terms

of Vi and ωi it is more useful to take the following approach: Note that

Ṽi = eB

(
Ṽi

gVi

)
. (4.3)

We can then use (2.16) to find

H(V1,V2,V3) = Ṽ µ
1 Ṽ ν

2 Ṽ ρ
3 Hµνρ +

[
Ṽ µ

1 Ṽ ν
2 (V3ν,µ − V3µ,ν) + cyclic

]

−
[
Ṽ µ

1 ∂µ(Ṽ ν
[2V3]ν) + cyclic

]
, (4.4)

where in each of the terms in square brackets we must add the cyclic permutations of 123

and the indices are raised and lowered with g. With this formula in hand, we turn to the

special cases.

4.1 Three-form flux

The simplest case we can examine is when Ω = T ∗ and our vielbein takes the form,

Vi =

(
0

ωi

)
. (4.5)

In this case the property (3.1) reduces to ωiµωjνg
µν = δij , which implies that the ωi form

a vielbein in the ordinary sense. We also have

Ṽi =

(
g−1ωi

Bg−1ωi

)
, (4.6)

so that Ṽi = ωµ
i . Since Vi = 0, formula (4.4) gives

H(V1,V2,V3) = ωµ
1 ων

2ωρ
3Hµνρ . (4.7)

Hence, the flux integral becomes
∫

Σ

H(V1,V2,V3)V1 ∧ V2 ∧ V3 =

∫

Σ
(ωµ

1 ων
2ωρ

3Hµνρ) ω1γω2βω3τ dξγ ∧ dξβ ∧ dξτ . (4.8)
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Noting again that the ωi form an ordinary vielbein, this reduces to
∫

Σ
H , (4.9)

which is the standard formula for 3-form flux. Note that we did not need to worry about

the fiber condition since Vi = 0.

4.2 Geometric flux

Geometric fluxes arise from T-dualizing spaces with H-flux. We suppose that Σ has one

killing vector V that generates a circle bundle. We then pick as our basis for Ω,

V1,2 =

(
0

ω1,2

)
, V3 =

(
V

BV

)
, (4.10)

where the ω are a complete set of forms on the base of the circle bundle. One can also take

V3 to be a pure vector; however the above choice makes it clear that Ω is a global section

of E when there is a non-trivial B-field. Note that we have

Ṽ3 =

(
0

gV

)
, (4.11)

so that Ṽ µ
3 = 0. The vielbein property (3.1) becomes

V µV νgµν = 1 , ωiµωjνg
µν = δij . (4.12)

It is convenient to pick one of our coordinates, ξ3 to be the circle coordinate with period

1, so that, using (4.12), we have

V =
1√
g33

∂

∂ξ3
. (4.13)

We can now use the formula (4.4) to compute the flux,

H = ωµ
1 ων

2 (Vν,µ − Vµ,ν) +
1

2
(ωµ

1 (ω2(V3)),µ + (1 ↔ 2)) . (4.14)

However, using that Ω must be isotropic, we have that ω1,2(V ) = 0, and second term

vanishes. Thus, we get just

H = ωµ
1 ων

2 (Vν,µ − Vµ,ν) . (4.15)

Our measure factor V1 ∧ V2 ∧ V3 gives

ω1µω2νBρτV
τ
3 dξµ ∧ dξν ∧ dξρ +

1√
g33

ω1µω2νdξµ ∧ dξν ∧ dξ̂3 . (4.16)

The first term, however vanishes again by the isotropy of Ω.8 Hence, we find just

1√
g33

ω1µω2νdξµ ∧ dξν ∧ dξ̂3 . (4.17)

8Proof : We are imposing that ω1,2(V3) = 0. We also have ω′
µ = BµνV ν satisfies ω′(V ) = 0. However,

the space of forms α satisfying α(V ) = 0 is only two dimensional. Thus ω′ is a linear combination of ω1,2

and ω1 ∧ ω2 ∧ ω′ = 0.
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Putting everything together, our flux takes the form,

∫
1√
g33

ωµ
1 ων

2 (Vν,µ − Vµ,ν)ω1µω2νdξµ ∧ dξν ∧ dξ̂3 . (4.18)

Again using the condition that ω1,2(V ) = 0, this can be rewritten as

∫
ωµ

1 ων
2 (dA)µν ω1µω2νdξµ ∧ dξν ∧ dξ̂3 , (4.19)

where

Aµ = (
√

g33)
−1Vµ =

gµ3

g33
. (4.20)

Notice that Aµ is just the connection on the circle bundle generated by V . Examining the

Buscher-rules, one notes that it is also the T-dual of Bµ3.

Since we have picked the length of our circle-coordinate to be one, we may simply drop

the dξ̂3. The integral then reduces to

∫
ωµ

1 ων
2 (dA)µν ω1µω2ν dξµ ∧ dξν =

∫
dA , (4.21)

where the integral is performed over the base of the circle-fibration. This gives the first

Chern-class of the circle bundle, which is the geometric flux.

Example: The f-space. As a simple example, consider the pure-metric space given by,

ds2 = (dξ1)2 + (dξ2)2 + (dξ3 + nξ1dξ2)2 , (4.22)

The ξ2,3 directions can be compactified in the usual way under the symmetries ξ2,3 →
ξ2,3 + 1. The ξ1 direction can also be compactified, but under the combined symmetry,

ξ1 → ξ1 + 1 , ξ2 → ξ2 , ξ3 → ξ3 − nξ2 . (4.23)

This space is known variously as a Scherk-Schwarz compactification, twisted torus and

nil-manifold as well just the f -space [33, 14, 9, 34].

The vielbein appropriate for measuring the geometric flux takes a very simple form in

this space;

V1 = dξ1 , V2 = dξ2 , V3 =
∂

∂ξ3
. (4.24)

Here we are treating the circle bundle as the ξ3 direction. Inspecting the metric (4.22),

we see that A = nξ1dξ2 and dA = ndξ1 ∧ dξ2. Formula (4.21) reduces to just

∫
n dξ1 ∧ dξ2 = n , (4.25)

which gives the geometric-flux. It is important to note that this integral should not be

thought of as being performed over a 2-dimensional slice of the f -space. In fact, no such

slice exists. The reader may check, for example that the plane determined by ξ3 = 0 is

not consistent with the identification (4.23). Rather, after we perform the “integral” over
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∂/∂ξ3 we have effectively dimensionally reduced along the ξ3-direction so that each point

specified by ξ1,2 corresponds to circle.

Note that T-dualizing along the ξ3 direction gives a space with metric and B-field,

ds2 = (dξ1)2 + (dξ2)2 + (dξ3)2 , B = nξ1 dξ2 ∧ dξ3 . (4.26)

Applying the same T-duality to the vielbein, (4.24) becomes

V1 = dξ1 , V2 = dξ2 , V3 = dξ3 . (4.27)

Thus, to compute the generalized flux we should use (4.9) which gives
∫

dB d3ξ = n,

demonstrating the expected invariance under T-duality.

4.3 Non-geometric Q-flux

One kind of non-geometric flux, known as Q-flux, which has been studied recently [14, 9,

11, 10, 31, 18, 26, 29, 30, 15, 17] is associated with a so-called β-transformation. A β-

transformation is the double T-dual of a B-transformation. It acts on generalized vectors

as

V → eβV =

(
1 β

0 1

)(
V

ω

)
, (4.28)

where β is an antisymmetric matrix.

A Q-space is a T 2 fibered over an S1 in which, when one goes around the S1, one per-

forms a β-transformation. In order to find global sections of EΣ, we should look for a viel-

bein that is not affected by β-transformations. Examining the form of the β-transformation

given in (4.28), we see that generalized vectors whose 1-form part vanishes are unaffected

by β-transformations.

For definiteness, let our space be a T 2 with coordinates ξ2,3 fibered over an S1 with

coordinate ξ1. Consider a metric and B-field of the form,

g =

(
1

gab

)
, B =

(
0

Bab

)
, (4.29)

where a, b run over 2, 3 and nothing depends on the coordinates ξ2,3 of the T 2. We take

Ω to be spanned by

V1 = dξ1 , V2 = va
1

∂

∂ξa
, V3 = va

3
∂

∂ξa
. (4.30)

The property (3.1) is now quite complicated:

va
i (g − Bg−1B)abv

b
j = δij . (4.31)

However, it is straightforward to find an appropriate pair of v’s and substitute it into the

general formula (3.25). This yields

H V1 ∧ V2 ∧ V3 =

[
∂

∂ξ1
Re

(
1

τ

)]
dξ1 ∧ dξ̂2 ∧ dξ̂3 , (4.32)
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where we have defined τ = B12 + i
√

g. Assuming that the ξ2,3 coordinates run from 0 to

1, we can perform the integral over them trivially, yielding

Q-flux =

∫
H V1 ∧ V2 ∧ V3 =

∫
dξ1 ∂

∂ξ1
Re

(
1

τ

)
. (4.33)

To illuminate the meaning of this expression, we note that a β-transformation acts as

τ → τ

1 + βτ
, (4.34)

which takes

Re
(
τ−1

)
→ Re

(
τ−1

)
+ β . (4.35)

Since the formula (4.33) is an integral of a total derivative, the Q-flux is given by the

β-transformation that maps the top to the bottom. Since (4.34) must be an element of

SL(2, Z), this gives an integer.

Example: The standard Q-space. The original example of a space with Q-flux is

found by T-dualizing the f -space example (4.22) along the ξ2-direction [9]. This gives a

metric and B-field,

ds2 = (dξ1)2 +
1

1 + n2(ξ1)2
((dξ2)2 + (dξ3)2) , B =

nξ1

1 + n2(ξ1)2
dξ2 ∧ dξ3 . (4.36)

The ξ2,3 directions are compactified with unit period, while the ξ1 direction is compactified

with unit period only up to a β-transformation. The appropriate vielbein is given by T-

dualizing the vielbein in (4.24) yielding

V1 = dξ1 , V2 =
∂

∂ξ2
, V3 =

∂

∂ξ3
. (4.37)

Substituting these into the flux formula yields

∫

Σ

H =

∫
n dξ1 ∧ dξ̂2 ∧ dξ̂3 = n . (4.38)

To see that this agrees with the more general formula (4.33) note that

τ =
nξ1 + i

1 + n2(ξ1)2
=

1

nξ1 − i
. (4.39)

Hence,

∂

∂ξ1
Re(τ−1) = n , (4.40)

which reproduces (4.38).
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5. The generalized connection and the flux

In this section, we discuss a generalized connection that acts on generalized vectors and

its relation to the generalized flux. Although the flux H often arises as a torsion of a

connection, computing the analogue of the torsion of the generalized connection, we see

that it vanishes. However, we find that the flux H arises from an object very similar to the

torsion.

For clarity, it is useful to introduce an index notation. We denote a generalized vector

by VI where the index I runs over the tangent indices followed by the cotangent indices.

The indices can be raised and lowered using the metric,

XIJ =

(
0 1

1 0

)
, XIJ =

(
0 1

1 0

)
. (5.1)

Note that a lowered index, as in VI simply runs over the cotangent indices first followed

by the tangent indices. The matrix G has index structure GI
J . The lowered matrix GIJ is

the positive definite metric introduces in (2.14). The raised matrix GIJ is, as one would

like, the inverse of GIJ so that GIJGJK = δK
I . This follows from the basic property that

G2 = 1.

The goal of this section is to write down a covariant derivative DI which, when acting

on vectors,

DIVJ , (5.2)

gives a two index object covariant under diffeomorphisms, B-transformations and T-duality.

Note that this is not a connection in the ordinary sense, since it allows one to take deriva-

tives with respect to the T-dual coordinates.

To define the generalized connection, we begin by defining an ordinary connection on

E. This connection will be invariant under diffeomorphisms and B-transformations, but

will not be invariant under T-duality.

We take the connection to be of the form

Dµ = ∂µ + Ωµ , (5.3)

where Ωµ is a matrix Ωµ
I
J which acts on the generalized vector indices. When the B-field

vanishes, it is very natural to take the connection to have the form

Dµ

∣∣∣
B=0

=

(
∇µ 0

0 ∇̂µ

)
, (5.4)

where ∇µ is the Levi-Civita connection on vectors and ∇̂µ is the Levi-Civita on 1-forms.

When B 6= 0, one can partially fix the form of Dµ by demanding that it annihilate

both XIJ and GIJ and that it transform covariantly under B-transformations. This unfor-

tunately is not enough to completely determine the connection, as one is still left with a

one-parameter family of possible connections:
(

1 0

B 1

)[(
∇µ 0

0 ∇̂µ

)
+ a

(
0 1

2g−1Hµg−1

1
2Hµ 0

)](
1 0

−B 1

)
. (5.5)
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Here we have used the shorthand Hµ for Hµνρ where ν and ρ are treated as matrix indices.

To fix an appropriate choice for a, it is useful to turn to string theory for guidance. Recall

that in the fermionic terms of the N = 1 string action the kinetic terms use the connection

∇±
µ = ∇µ ± 1

2
g−1Hµ , (5.6)

where we take + for the right moving fermions and − for the left moving fermions. This

connection, known as the Bismut connection in the generalized literature, was first in-

troduced in string theory by Gates, Hull and Rocek [35] and is relevant for a number of

applications in generalized complex geometry [4, 3].

We can now fix the form of (5.5) by insisting that if V ∈ C± that

π(DµV) = ∇±
µ π(V) . (5.7)

In other words, the covariant derivative just acts as the Bismut connection on the vector

part of V. This extra condition fixes a = 1 and gives the lift of the Bismut connection to

generalized geometry:

Dµ ≡
(

1 0

B 1

)(
∇µ

1
2g−1Hµg−1

1
2Hµ ∇̂µ

)(
1 0

−B 1

)
. (5.8)

This connection has nice properties under T-duality. Suppose the x-direction parametrizes

a circle and that neither g nor B depends on x. Then we find9

Dµ Tx−→ TxD
µTx , µ 6= x , (5.9)

Dx Tx−→ Tx (BxσDσ − GgxσDσ) Tx . (5.10)

The matrices Tx are the elements of SO(d, d) which represent T-duality along the x di-

rection. Since T-duality switches vectors with forms, (5.10) gives us the form part of the

generalized connection. Indeed, setting

DI =

(
Dµ

−GDµ + BµσDσ

)
, (5.11)

it is straightforward to check using (5.9) and (5.10) that, when acting on a vector, as in

DIVJ , that the resulting two index object transforms covariantly under diffeomorphisms,

B transformations and T-duality.

5.1 Parallel transport and torsion

We define the parallel transport of V2 along V1 by

DV1
VK

2 = XIJVI
1 DJVK

2 . (5.12)

9We have not found a simple proof of this formula. However, it is straightforward, although cumbersome,

to check by a direct application of the Buscher-rules.
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This definition of parallel transport has a nice formula in terms of the connection (5.8),

which can be found using the definitions (5.11) and (5.12):

DV1
VK

2 = π(Ṽ1)
µDµVK

2 − π(V1)
µDµṼK

2 . (5.13)

This expression gives a derivation of the “Leibniz rule”,

DV1
(fV2) = fDV1

V2 + [π(Ṽ1)(f)]V2 − [π(V1)(f)]Ṽ2 . (5.14)

Now that we have defined parallel transport, we may attempt to define a torsion

T(V1,V2) = DV1
V2 − DV2

V1 − [V1,V2] . (5.15)

A nice choice for the bracket, [, ], which makes T into a tensor, is given by

[V1,V2] = G[Ṽ1, Ṽ2]C − G[V1,V2]C . (5.16)

A straightforward, but tedious computation of T(V1,V2) reveals that

T(V1,V2) = 0 , (5.17)

so that, in the sense defined by (5.15) and (5.16), the torsion vanishes.

This computation suggests that the notion that the flux is given by the torsion of the

connection, as holds for the Bismut connection for example, is not quite right. Consider,

however, the torsion-like quantity,10

−1

3
(〈(DV1

V2),V3〉 − 〈(DV2
V1),V3〉) + cyclic . (5.18)

Using (5.15) and (5.16) this reduces to

H(V1,V2,V3) −
1

3
[〈[V1,V2]C , Ṽ3〉 + cyclic] . (5.19)

Notice that for V’s which are appropriate for a generalized 3-cycle, we would have

[Vi,Vj]C = 0, so that (5.19) would reduce to just H(V1,V2,V3). This is, in fact, how

we originally found the flux formula.

5.2 Differentiation of tensors

Although they are not relevant for the main line of discussion, we end this section with a

few observations about the action of generalized connection on tensors. For A a generalized

vector, we have the following identity,

GI
JDJAK + DI(GK

LAL) = 0 . (5.20)

This implies that the index on the generalized connection lives in the opposite half of the

splitting as the index of the vector it is differentiating.

10For the Bismut connection, for example, we would find ∇
±

V1
V

µ
2 V3µ − ∇

±

V2
V

µ
1 V3µ = ±H(V1, V2, V3) +

[V1, V2]
µV3µ, yielding the torsion plus a term that vanishes provided [V1, V2] = 0.
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Because of the G in the definition (5.11), DI does not satisfy the Leibniz rule when

acting on products of vectors unless all of the vectors live in C+ or all live in C− (in

which case one can replace G by ±1). This implies that it is not meaningful to speak of

differentiating a tensor TI1I2...In unless it satisfies

∀i, j GIi
JTI1...Ii−1JIi+1...In = GIj

JTI1...Ij−1JIj+1...In . (5.21)

Because of the rule (5.20) we cannot act multiple times with the connection since the prop-

erty (5.21) is not preserved under differentiation. This makes it very difficult to construct

a curvature of the generalized connection.

6. Discussion

We conclude with a few comments on future directions and problems that we believe deserve

further study.

1. In our construction of the generalized flux integral, we relied heavily on what we

called fiber condition. This condition was required to ensure that we could give a

sensible definition of integration over a generalized 3-cycle. It seems likely, however,

that the spaces on which integration is well-defined could be extended. Currently,

for example, our definition is not broad enough to handle spaces where coordinates

and dual coordinates mix on the torus fibers and we are, thus, not able to realize a

full SO(d, d; Z) symmetry for our definition of integration. This makes it difficult to

understand fluxes on spaces for which there is no geometric dual.

2. Although in the examples we were able to show that the integral of H over a gener-

alized 3-cycle was always a topological quantity and in fact an integer, it would be

nice to have proof of this in the framework of generalized geometry.

3. Our discussion of the generalized connection seems far from complete. There is

already a well-established connection which acts on pure spinors [4], and it would

be interesting to try to connect the two. It also seems quite interesting to try to

understand whether there is a natural notion of the curvature of the connection.

4. It would be nice to give a stringy derivation of the flux formula. The string action can

already be written in a generalized form, following [32, 16, 17, 15], and the related

works [36 – 40],

S =
1

4

∫
GIJZI ∧ ∗ZJ + BIJZI ∧ ZJ , (6.1)

where BIJ is the canonical anti-bracket of E given by the matrix,

BIJ =

(
0 1

−1 0

)
,

and Z = dXµ + Ωµ where Ωµ is an auxiliary one-form on the worldsheet as well as in

spacetime. It would be quite nice if we could replace the B term with a WZW-term

involving H, but we have not yet found a way to do so.
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[35] J. Gates, S. J., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric

nonlinear σ-models, Nucl. Phys. B 248 (1984) 157.

[36] U. Lindström, Generalized complex geometry and supersymmetric non-linear σ-models,

hep-th/0409250.
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